The Charest Lab
  • Home
  • People
  • Research
  • Pubs
  • Photos
  • Contact
  • Links
  • Isaiah Toth

Charest lab and Dr. Charest's Publications (link to PubMed)

24. S.E. Collins, M.E. Wiegand, A.N. Werner, I.N. Brown, M.I. Mundo, D.J. Swango, G. mouneimne, and P.G. Charest. Ras-mediated activation of mTORC2 promotes breast epithelial cell migration and invasion. Mol. Biol. Cell. 34(2):ar9 (2023). pdf
On the cover: Acini formed by breast epithelial MCF10A cells grown in 3D cultures are disrupted when cells express the Ras oncogene. The montage shows a normal MCF10A acinus with a hollow lumen that recapitulates the normal mammary gland epithelial architecture (upper left), as well as abnormal acini and clusters of MCF10A cells transformed with the Ras oncogene that display uncontrolled proliferation and invasion of the surrounding matrix, as shown by fi lled lumen and cellular projections, respectively. The cells and acinar structures are visualized by immunostaining for the cellular cytoskeletal protein F-actin (green) and basement membrane protein laminin (blue). In this issue of MBoC, Collins et al. (ar9) found that Ras stimulates the migration and invasion of transformed MCF10A cells and breast cancer cells by promoting the activation of mechanistic target of rapamycin complex 2 (mTORC2). (Image: Shannon E. Collins and Pascale G. Charest, University of Arizona, Tucson)
Picture
23. S.F. Smith, S.E. Collins, and P.G. Charest. Ras, PI3K and mTORC2 - three's a crowd?. J. Cell. Signal. 133(19): jcs234930 (2020). pdf

22. AFM T. Islam, M. Scavello M., P. Lotfi, D. Daniel, P. Haldeman, P.G. Charest. Caffeine inhibits PI3K and mTORC2 in Dictyostelium and differentially affects multiple other cAMP chemoattractant signaling effectors. Mol. Cell. Biochem. 457:157-168 (2019). pdf

21. AFM T. Islam, H. Yue, M. Scavello, P. Haldeman, W.J. Rappel, and P.G. Charest. The cAMP-induced G protein subunits dissociation monitored in live Dictyostelium cells by BRET reveals two activation rates, a positive effect of caffeine and potential role of microtubules. Cell. Signal. 48:25-37 (2018). pdf

20. M. Scavello*, A.R. Petlick*, R. Ramesh, V.F. Thompson, P. Lotfi, and P.G. Charest. Protein Kinase A regulates Ras, Rap1, and TORC2 pathways in response to the chemoattractant cAMP in Dictyostelium. J. Cell Sci. 130:1545-1558 (2017). pdf

19. AFM T. Islam, B.M. Stepanski, and P.G. Charest. Studying chemoattractant signal transduction dynamics in Dictyostelium by BRET. Meth. Mol. Biol. 1407:63-77 (2016). pdf

18. A. Khanna*, P. Lotfi*, A.J. Chavan, N.M. Montaño, P. Bolourani, G. Weeks, Z. Shen, S.P. Briggs, H. Pots, P.J.M Van Haastert, A. Kortholt, and P.G. Charest. The small GTPases Ras and Rap1 bind to and control TORC2 activity. Sci. Rep. 6:25823 (2016). *equal contribution. pdf

17. K. Sumita, H. Yoshino, M. Sasaki, N. Majd, E.R. Kahoud, H. Takahashi, K. Takeuchi, T. Kuroda, S. Lee, P.G. Charest, K. Takeda, J.M. Asara, R.A. Firtel, D. Anastasiou, and A.T. Sasaki. Degradation of activated K-Ras orthologue via K-Ras specific lysine residues is required for cytokinesis. J. Biol. Chem. 289:3950-9 (2014). pdf

16. V. Kölsch, Z. Shen, S. Lee, K. Plak, P. Lotfi, J. Chang, P.G. Charest, J.L. Romero, T.J. Jeon, A. Kortholt, S.P. Briggs, and R.A. Firtel. Daydreamer, a Ras effector and GSK-3 substrate, is important for directional sensing and cell motility. Mol. Biol. Cell. 24(2):100-14 (2013). pdf

15. K. Takeda, D. Shao, M. Adler, P.G. Charest, W.F. Loomis, H. Levine, A. Groisman, W.J. Rappel, and R.A. Firtel. Incoherent feedforward control governs adaptation of activated Ras in eukaryotic chemotaxis pathway. Sci. Signal. 5, ra2 (2012). pdf

14. I. Hecht, M.L. Skoge, P.G. Charest, E. Ben-Jacob, R.A. Firtel, W.F. Loomis, H. Levine, and W.J. Rappel. Activated membrane patches guide chemotactic cell motility. PLoS Comput. Biol. 7(6):e1002044 (2011). pdf
13. P.G. Charest, Z. Shen, A. Lakoduk, A.T. Sasaki, S.P. Briggs, and R.A. Firtel. A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev. Cell. 18:737-49 (2010). pdf
On the cover: The illustration represents Dictyostelium cells migrating in a chemoattractant gradient. Charest et al. (pp. 737-749) discovered that a Ras signaling complex is enriched at the front of these cells and mediates chemotaxis via Ras-dependent activation of the Target of Rapamycin Complex 2 (TORC2) and its target Akt/PKB. A negative feedback loop tunes Ras-TORC2-Akt/PKB signaling by controlling the localization of the Sca1 complex and thus Ras activation. Image created by Jessica Chang.
Picture
12. P.G. Charest and R.A. Firtel. “TORCing” neutrophil chemotaxis. Dev. Cell 19(6):795-6 (2010). pdf

11. S. Zhang*, P.G. Charest*, and R.A. Firtel. Spatio-temporal Regulation of Ras Activity Provides Directional Sensing. Curr. Biol. 18(20):1587-93 (2008). * Equal authorship. pdf

10. V. Kölsch, P.G. Charest, and R.A. Firtel. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121(Pt 5):551-9 (2008). pdf

9. F.F. Hamdan, M.D. Rochdi, B. Breton, D. Fessart, D.E. Michaud, P.G. Charest, S.A. Laporte, and M. Bouvier. Unraveling g protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2. J. Biol. Chem. 282(40):29089-100 (2007). pdf

8. A.T. Sasaki, C. Janetopoulos, S. Lee, P.G. Charest, K. Takeda, L.W. Sunddheimer, R. Meili, P.N. Devreotes and R.A. Firtel. G Protein-Independent Ras/PI3K/F-Actin Circuit Regulates Basic Cell Motility. J. Cell. Biol. 178(2):185-91 (2007). pdf

7. P.G. Charest and R.A. Firtel. Big roles for small GTPases in the control of directed cell movement. Biochem. J. 401(2):377-90 (2007). pdf

6. P.G. Charest, G. Oligny-Longpré, H. Bonin, M. Azzi and M. Bouvier. The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cell. Signal. 19(1):32-41 (2007). pdf

5. P.G. Charest and R.A. Firtel. Feedback signaling controls leading edge formation during chemotaxis. Curr. Opin. Genet. Dev. 16(4):339-47 (2006). pdf

4. P.G. Charest, S. Terrillon and M. Bouvier. Monitoring agonist-promoted conformational changes of b-arrestin in living cells by intramolecular BRET. EMBO rep. 6(4): 334-40 (2005). pdf

3. J. Perroy, S. Pontier, P.G. Charest, M. Aubry and M. Bouvier. Real-time monitoring of ubiquitination in living cells by BRET. Nat. Meth. 1(3):203-8 (2004). pdf

2. P.G. Charest and M.Bouvier. Palmitoylation of the V2 vasopressin receptor carboxyl tail facilitates barrestin recruitment leading to efficient receptor endocytosis and ERK1/2 activation. J. Biol. Chem. 278(42):41541-51 (2003). pdf

1. M. Azzi, P.G. Charest, S. Angers, M. Bouvier and G. Pineyro. bArrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for GPCRs. Proc. Natl. Acad. Sci. U S A 100(20):11406-11 (2003). pdf
    The Charest Lab, Department of Chemistry and Biochemistry, University of Arizona, Tucson AZ 85721
All website content is protected by copyright
Proudly powered by Weebly