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Abstract

Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are
interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often
accompanied by activated membrane patches, which are localized areas of increased concentration of one or more
signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of
RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted.
Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and
membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two
coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates
transient and localized areas of elevated concentration of one of the components along the membrane. The activated
patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second
module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our
model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally
observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result
directly from the dynamics of the signaling patches.
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Introduction

Directional cellular migration is a widely observed phenome-

non, ranging from mammalian cells to unicellular eukaryotes to

bacteria. During development, as well as in mature organisms,

cells respond to environmental cues and migrate to distant sites to

perform different tasks, such as wound healing or immune

response [1]. In other cases, cells respond to a nutrient gradient

and migrate towards a food source [2,3], or aggregate to form a

multi-cellular slug [4,5]. Directional motion according to external

cues, known as chemotaxis, is typically controlled by signaling

processes in the cell. Through signal transduction pathways, the

external stimulation leads to internal symmetry breaking and to

the formation of a distinct front and back. This sensing step is then

coupled to cell mechanics, which is also governed by signaling

processes which are highly conserved between different organisms

[6].

In the last decade, many studies have been devoted to the

characterization of different signaling components and systems in

different organisms (see e.g. [7–9]). Other studies, both theoretical

and experimental, have dealt with the biophysics of cellular

motion including such aspects as actin polymerization, adhesion

and myosin-based contraction [10–14]. However, an understand-

ing of the coupling between the two systems – directional sensing

and motility mechanics –is still incomplete, both from the

experimental and the theoretical points of view. A modeling study

of this coupling was undertaken in ref. [13], but from a perspective

that does not build on observed correlations between these two

parts of the overall chemotactic response. Yang et al. [15] used the

level set method to link cell deformations with signaling events

including PIP3 localization to calculate the pressure profile in a

cell. However, their model was unable to predict experimentally

observed cell shapes, probably because it did not take into account

the complex signaling dynamics. In this paper we study how the

signaling pattern and dynamics influence macroscopic features of

cellular shape and motion, by using both experimental data and

computational modeling. Specifically, we show that several

experimental observations of cell motion can be explained by a

better understanding of the spatio-temporal aspects of the

aforementioned coupling.

In the social amoeba Dictyostelium discoideum, a large number of

the signaling components have been identified through extensive

genetic and biochemical investigations, along with their spatial

intra-cellular distribution relative to an external gradient

[7,16,17]. This distribution is usually non-uniform with several

components located at the front while others are concentrated at
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the back of the cell [18,19]. The cell motion is then accomplished

by membrane protrusions at the front of the cell, along with

retraction at the back. These protrusions are generated through

the polymerization of actin filaments while the retraction is

associated with cortical tension generated by actin-myosin

interactions [20,21]. For amoeboid cells, the protrusions take the

form of pseudopods with finite life-times, leading to repeated

cycles of extension and retraction.

One of the earliest measurable signaling events is the

appearance of activated Ras, RasGTP, to the front of the cell

[22]. This is then followed by the recruitment of other signaling

molecules with a number of feedback loops [23]. Such

experiments are typically carried out by exposing cells to a steep

gradient originating from a pipette and do not address the

subsequent motion of the cell. When exposed to a uniform

stimulus, cells display a number of membrane ‘‘patches’’ in which

the concentration of a signaling molecule is greatly increased.

These patches have been implicated in the formation of

pseudopods [24,25] and RasGTP has been shown to co-localize

with the site of F-actin polymerization in both chemotaxing cells

and in cells undergoing random motility [22,26]. Furthermore, it

has been reported that RasGTP can drive localized actin

polymerization via PI3K [27]. Recently, a number of features of

chemotactic cell motion, including the rate of pseudopod

formation, the distribution of de novo pseudopods and their

persistence have been studied quantitatively [28–30]. This analysis

revealed that the rate of formation of pseudopods is roughly

independent of orientation of the cell with respect to the shallow

gradient. Furthermore, it was argued that new pseudopods are not

always located in the direction of the highest receptor occupancy,

inconsistent with a deterministic ‘‘chemical compass’’ model

[31,32]. In fact, these experiments have been taken to imply the

existence of a specialized tip splitting mechanism in which the

location of a new pseudopod is highly correlated with the location

of the current pseudopod from which it splits off.

Because the coupling of the directional sensing pathways to the

motility machinery is currently not well understood, it has been

difficult to develop detailed mathematical models that can simulate

realistic cell motion. Most models to date have addressed distinct

parts of motility, including retraction and protrusion [33], but are

unable to describe the entire motility process; other models use ad-

hoc rules to describe the motion [11,12]. What has been lacking is

a model that couples elements of the sensing machinery to cell

motility.

Part of the challenge of developing models has been the lack of

experimental data that reliably identify membrane protrusions

mechanisms. Many experiments have been performed in assays

where a thin horizontal subsection of the cell was visualized by

confocal microscopy. Chemotaxing cells, however, can extend into

the vertical direction. This vertical extent makes it difficult to

quantify the correlation between the localization of signaling

components and membrane extensions. In this paper, we examine

the localization of RasGTP by GFP-tagged Ras binding domain

(RBD). RBD-GFP intensity was measured along the membrane of

Dictyostelium cells moving in a chemoattractant gradient and

correlated with pseudopodal protrusions. This was done with cells

restricted in the vertical direction such that fluorescent patches at

the membrane could be visualized in a single confocal section and

membrane protrusions could be quantitatively measured. In the

first set of experiments, we used the well-established under-agar

assay in which cells must lift a thin layer of agar as they move [34],

while in the second set of experiments, we employed a microfluidic

device in which the cells are constrained by the height of the

chamber [35]. We used the results from these experiments to

perform a quantitative analysis of the spatial correlation between

signaling components and pseudopod extensions and found a

strong spatial correlation between patches of RasGTP and

membrane protrusions.

On the basis of these new experimental data, we develop a

mathematical model for cell motion in which cell protrusions are

driven by patches of an activator, qualitatively similar to the

observed RasGTP patches at the front of chemotaxing cells. Our

model incorporates a set of mechanisms that allow for the

simulation of cell motion under a variety of experimental

conditions and is studied here for the specific case of patch-driven

chemotactic response in a static gradient. We show that our model

produces realistic amoeboid-like motion and can demonstrate the

effects of gradient steepness, cortical tension, and polarity on the

cell shape and motion. Our model shows that the patch dynamics

of membrane bound activators result in an apparent tip splitting

behavior and that therefore an explicit splitting mechanism is not

needed. Specifically, a patch in our model is stable and will not

bifurcate into two or more spatially distinct patches before

disappearance, as is the case in several physical systems [36].

Furthermore, we show that the apparent process of the cell

‘‘choosing’’ the better-oriented pseudopod [37] is simply an

outcome of the disappearing-reappearing dynamics of the

activator patches. Finally, we show that the results of automated

pseudopod detection algorithms need to be carefully interpreted.

Results

Experimental Results
The Ras binding domain from human Raf1 binds strongly to RasG

in the GTP bound form [22,26,27,38]. We used RBD-GFP to track

the localization of RasGTP at the cell membrane in chemotaxing

Dictyostelium cells at 2 second intervals. Figure 1 shows several snapshots

of these cells in both the under-agar assay (a) and the microfluidic assay

(b). In both experimental setups, the vertical dimension of the cells was

restricted (for more details see Methods), which ensured that most of

the cell body remained in the focal plane of the microscope during its

motion. In the microfluidic device, cells entered cross chambers only

2 mm high that connected parallel channels carrying buffer on one side

of the cross chambers and 100 nM cAMP on the other. The length of

Author Summary

Different types of cells are able to directionally migrate,
responding to spatially-varying environmental cues. To do
so, the cell needs to sense its environment, decide on the
correct direction, and finally implement the needed
mechanical changes in order to actually move. In this
work we study the relation between the sensing-signaling
system and the mechanical motion. We first show that
membrane protrusions which drive the overall transloca-
tion occur exactly at the same locations at which
membrane-bound signal-transduction effectors accumu-
late. These high concentration areas, also termed ‘‘patch-
es’’, exhibit interesting dynamics of disappearing and
reappearing. Based on these findings, we develop a
mathematical-computational model, in which membrane
protrusions are driven by these membrane ‘‘patches’’.
These protrusions are then coupled to other cellular forces
and the overall model predicts motion and its relationship
to shape changes. Using our approach, we show that
several observed features of cellular motility, for example
the splitting of the cell tip, can be explained by the
upstream signaling dynamics.

Membrane Patches and Chemotactic Cell Motility
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the cross chambers varied from 650 mm to 100 mm thereby generating

gradients of different steepness.

The cell speed in the under-agar assay, as well as the

microfluidic devices, was found to be 8–10 mm/min. The

chemotactic index (CI), defined as the ratio of the distance

traveled in the direction of the gradient and the total distance, was

0.71 to 0.94 for cells in the microfluidic devices. It was not possible

to compute a CI for the under-agar experiments since the precise

direction of the gradients is not known.

We quantitatively compared the location of RBD-GFP patches

and the location of membrane protrusions. Patches were detected

using a global threshold for filtering background intensity and

protrusions were detected by comparing the membrane location in

successive frames (see Methods). The location of a patch in each

frame can be defined by an angle h between an arbitrary axis and

the line connecting the center of the patch and the center of the

cell. A similar angle Q can also be defined for the location of the

pseudopod. An example of this analysis is presented in Figure S1

in the Supporting Information section.

To test the spatial correlation between the locations of patches

and protrusions, we define a correlation function between a patch

and a protrusion at frame i as

Ci~ cos (hi{yi) ð1Þ

This correlation function takes on values between 21, corre-

sponding to anti-correlated patch and pseudopod locations, and 1,

corresponding to a patch location that coincides exactly with the

pseudopod location. If patches and protrusions are completely

uncorrelated this correlation function should average to zero (data

not shown).

The correlation function of Eq. (1), for a particular cell in the

microfluidic device, is shown in Figure 2 and remains close to the

maximal value of 1 for most frames. We have analyzed three cells

in the under agar experiment (305 frames, 297 of which showed

both a patch and a pseudopod). We found an average correlation

function of 0.83, 0.87 and 0.89 for co-localization of RasGTP

patches and membrane protrusions. In the microfluidic device we

analyzed eight cells, totaling 3421 frames of which 2289 showed

both a patch and a pseudopod. Taking the data from all frames in

both experiments that contain both a patch and a protrusion we

found an average correlation function of 0.90 (60.04). This

correlation analysis implies a close relationship between protru-

sions and RasGTP patches: a new protrusion is accompanied by

membrane-localized RasGTP accumulation in the same place in

space. Furthermore, the fact that the correlation function for both

assays is similar suggests that this relationship is independent of the

experimental details. We have also tested five cells under uniform

stimulation of cAMP (100 nM) and found an average correlation

of 0.9 (60.05). This indicates that the RasGTP-protrusion

correlation is not specific to a gradient sensing process.

The measured strong correlation is consistent with a causal

relationship in which a RasGTP patch almost always leads to a

membrane protrusion. Previous experiments have demonstrated

that Ras activation mediates leading edge formation, through

activation of basal PI3K and other Ras effectors required for

chemotaxis [22]. It was also shown that mutants with defective

RasG exhibited a loss of directionality and severe loss of

movement [22]. In this work, we focus on the spatial correlation,

demonstrating that activated Ras localization and pseudopod

formation occur at the very same location in the cell.

Computational Motility Model
Based on the abovementioned results, we developed a

computational motility model in which protrusions are generated

by membrane patches of a putative chemical activator. The goal

of the model is to allow for the study of the effects on cellular

Figure 1. Dictyostelium cells with RBD-GFP. A series of snapshots from the under-agar experiment (a) and from the microfluidic experiment (b).
Time between frames is 10 seconds.
doi:10.1371/journal.pcbi.1002044.g001

Figure 2. Spatial cross correlation between patches and
protrusion (Eq. 1) for a single cell in the microfluidic device
as a function of the frame number.
doi:10.1371/journal.pcbi.1002044.g002

Membrane Patches and Chemotactic Cell Motility
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morphology of localized, transient protrusion forces, assumed to

originate from the signaling system downstream of the patch

dynamics. To do this requires embedding a patch generation

mechanism into a full cellular mechanics simulation. In the

absence of a complete understanding of all the relevant

biophysical effects at the whole cell level, we opted for creating

a relatively simple simulator, taking many experimental movies

both from our own lab and from other groups (see [30], e.g.) as

guidance. Later, we will discuss in detail which aspects of our

results should be insensitive to some of the details of the

mechanical model.

Following the aforementioned strategy, our motility model

consists of two coupled modules: the first module contains a

mechanism that creates transient localized patches while the

second module describes the actual motion of the cell. We will

consider a two-dimensional cell and will represent its membrane

by a set of nodes. For the first module, we choose our recently

developed excitable reaction-diffusion model which contains an

activator field a and an inhibitor b [39]. Even though our model is

not formulated at the level of specific biochemical components we

can nonetheless use the activator a to mimic the observed behavior

of activated Ras patches, so that their influence on downstream

motility can be tested. The equations governing these fields can be

written as

da

dt
~Da+2az

1

e
1{a2
� �

a{bð Þzg

db

dt
~Db+2bza{mbzb

ð2Þ

where Da and Db are the diffusivities of a and b, respectively, e, b,

and m are constants and g is a noise term. This term is taken from

a uniform distribution in the range [21,1], but, to avoid

overwhelming the system by simultaneous excitation of many

coupled points, only a small fraction of the points (0.001–0.01%)

are randomly given a non-zero noise term [39]. Such a noise

pattern can be generated by feeding Gaussian white noise into a

nonlinear excitable process (data not shown). Such processes have

been directly demonstrated in genetic networks [40,41]. In our

previous work, we have shown that this model is excitable for a

certain range of parameter values and that the inclusion of the

noise term leads to the spontaneous formation of domains of high

a. Due to the excitable nature of the model, these a-patches

spontaneously disappear, followed by the appearance of new

patches, similar to the observed RasGTP dynamics in our

experiments and to the dynamics of PIP3 patches [24]; this has

been discussed in detail elsewhere [39].

It should be noted that detailed and precise modeling of Ras

dynamics is beyond the scope and purpose of this work. Once

again, our goal is to test how the patch dynamics, and specifically

its come-and-go nature, influence the macroscopic cell shape and

motility. For this purpose, we only need a system that creates

patches of one of the species, which can then be used as an

activator for downstream processes. In fact, one can completely

replace the patch dynamics by an artificial process which puts

patches in by hand with the measured distributions, and recover

all of our results (data not shown).

The excitability of the system is controlled by the parameter b :

below b,0.6 the system is highly excitable while above this value

the excitability is significantly reduced. Thus, varying this

parameter along the cell boundary determines the rate of patch

formation and choosing the front of the cell to be excitable while

the back of the cell is unexcitable will lead to patch formation

concentrated at the cell’s front. Here, we do not explicitly concern

ourselves with modeling the gradient sensing mechanism that

detects the external chemical concentration field and determines

b. Indeed, how a cell determines its front has been the subject of

many theoretical studies [42,43]. Here, we directly assume that

front determination is accomplished through the formation of an

internal compass. The direction of this compass is determined by

the receptor occupancy and is therefore dependent on the external

gradient direction. Specifically, we choose the internal compass

direction, Qint, to be the external direction Qext plus some added

noise:

Qint~QextzgQ ð3Þ

The term gQ represents all the possible fluctuations in the

directional sensing process and is drawn from a Gaussian

distribution with zero mean and width s (see Figure 3). We

assume that the width of the noise distribution is inversely

proportional to the steepness of the gradient such that the

directional sensing process is more accurate for steeper gradients

(Figure 3) as is reflected in the increased chemotactic indices of

cells responding to steeper gradients [44]. The front of the cell is

then chosen to be the point on the membrane that is closest to the

direction of the internal gradient Qint. Once the angle is

determined, b is chosen to be peaked around the front with a

width that inversely depends on a (dimensionless) polarizability

parameter p. This parameter p determines how abruptly b changes

with the distance from the cell front and, hence, has an impact on

the width of the excitable zone on the membrane. A high value of

p corresponds to cells with a smaller width of the excitable zone

and, thus, to more polarized cells, while a low value of p represents

a larger excitable membrane zone and less polarized cells. The

precise form of the excitability along the membrane is given in the

Supporting Text S1.

The noise distribution width s, the polarizability parameter p

and the excitability b represent different aspects of the cellular

response. The response of the cell depends on its polarization level:

in relatively symmetric cells characteristic of early developmental

stages, projections extend all along the cell’s periphery, while in

polarized (elongated) cells projections only extend at the cell’s front

[45]. This change is represented by p, which is an internal property

of the cell and is hence independent of the external conditions.

The polarization and gradient are connected to the patch

formation mechanism through the parameter b (see also [39]

and the Supporting Text S1 and Figure S2). As mentioned above,

this parameterization is aimed at realistically describing the

signaling system, so that the influence of different signaling

behaviors on the cell motility can be tested.

Figure 3. Directionality mechanism in the computation model.
The cell membrane is shown (circular line) together with the external
direction, determined by the external gradient. The internal cellular
direction, the internal compass, is chosen from a Gaussian distribution
with its peak in the direction of the gradient and with a width that
depends on the gradient steepness: steep gradients results in a narrow
distribution (shaded area) while shallow gradients give rise to a wider
distribution (dotted line).
doi:10.1371/journal.pcbi.1002044.g003

Membrane Patches and Chemotactic Cell Motility

PLoS Computational Biology | www.ploscompbiol.org 4 June 2011 | Volume 7 | Issue 6 | e1002044



The second module is responsible for cell motion through the

definition of a force on each node, taken to be normal to the cell

membrane:

Ftot~fp(a){c(k{k0){C1(A{A0){lv ð4Þ

In this equation, the first term results from the localization of a and

couples the signaling module to the motility module. Specifically,

motivated by our experimental results, this protrusion force is

assumed to depend on the concentration of the activator a

(describing RasGTP) in the first module. For simplicity, we have

chosen a simple linear dependence as detailed in the Supporting

Text S1. Using other forms, including those with a non-linear

dependence, yielded essentially similar results.

In the actual cell, the relationship between the chemical driving

and eventual actin polymerization leading to protrusion forces is

rather complex. Under most conditions, our cell simulator is able

to ignore all of these complications and get by with the simplest

possible linear relationship. However, we show in Video S1 and in

Figure S3a that for the case of driving the cell with two strong

sources on opposite sides of the cell (see for example [30]) that this

model is unable to capture the fact that pseudopods must

eventually compete with each other and only one can win in the

long run. We have therefore added one extra part to this patch

chemical – protrusion force relationship, making it depend on a

global resource G(t) which is consumed by the pseudopod

construction process (see for example [45], where the authors

state that cytoskeletal or membrane components are probably

limited, causing the cell to occasionally ‘‘freeze’’). Video S2 and

Figure S3b show that, indeed, adding this effect yields the

observed cell behavior. The details of how G is dynamically

determined are discussed in the Supporting Text S1. For the case

of chemotactic motion to a simple gradient, the case of primary

interest here, this feature is relatively unimportant (see later).

The second term in the right side of Eq. (4) describes the cortical

tension, which depends on the local curvature k. c represents the

membrane rigidity, with higher values of c corresponding to more

rigid membranes. k0 is the spontaneous curvature of the cell,

which is the equilibrium curvature when the total force is zero,

namely k0~
1

R
for a circular cell of radius R. Due to the

differences in the acto-myosin cortex structure around the cell

versus the protrusion area, we take c to depend on position along

the cell membrane. Recent experiments [46–48] have revealed

that the tension is higher at the back, where presumably myosin

bundles and crosslinks the cortical actin layer, as opposed to the

front of the cell; thus we choose the back part of the cell, defined as

the portions of the membrane for which a,0, to have a cortical

tension (c1) that is about twice as high as the cortical tension (c2) in

the front part of the cell where a.0. In addition, we have

empirically discovered that in order to produce pseudopods with

large aspect ratio, i.e. long and narrow, and to get the ‘‘valleys’’

between pseudopods to have a reasonable shape, we need to allow

regions of the membrane with negative curvature to have a value

c3 that is smaller yet. A possible origin of this effect lies in that we

are using a two-dimensional model to describe a three-dimensional

cell (albeit moving within a limited three dimensional space). The

tension force in 3D should of course be proportional to the total

curvature and it might be the case that negative in-plane curvature

tends to cancel the positive out-of-plane curvature, resulting in

small net effect. In the Supporting Information (Text S1 and

Figure S4) we show how this effect modifies cell shape dynamics

and makes them more ‘‘biological’’. It is important to note though

that this additional assumption is not necessary in order to obtain

the primary conclusions of the paper, which is the relation

between signaling (RasGTP patches) and pseudopods and the

implications for tip splitting.

The third term ensures that the cellular area A (which is the

equivalent of the cellular volume in the 3D case) remains constant

and can be viewed as an effective pressure. Finally, the last term

represents an effective drag force, proportional to the local velocity

v, and determines the time a pseudopod continues to move after

the protrusion force has vanished. This term also yields a limit on

the maximal speed, so that a constant force in one direction results

in a constant speed rather than an unrealistic constant accelera-

tion. A complete list of the parameter values can be found in the

Supporting Text S1. The evolution of each node is found by

solving

dv

dt
~Ftot: ð5Þ

The entire simulation is performed in the following sequential

steps: First, the reaction-diffusion equations (3) are solved on the

entire membrane to find the value of the activator a at each point.

Second, the force on each node is computed using Eq. (4). Finally,

the nodes are advanced simultaneously according to Eq. (5). The

time scale in the simulations can be converted to physical units by

comparing the simulation cell speed to the cell speed obtained in the

experiments and by taking a cell length that is comparable to the

experimental dimensions of a cell. The internal compass in our

simulations is updated every 2 minutes and additional computa-

tional details, including a description of adding and removing nodes,

can be found in the methods section. A schematic diagram of the

model cell as well as movies of several simulations can be found in

the Supporting Information. The cell shape and motion both seem

qualitatively realistic, and specifically, the formation, retraction and

bifurcation of pseudopods resemble those seen in real cells.

Simulation Results
Snapshots of typical simulation runs are presented in Figure 4

where the cell contour is tracked over time for various parameter

sets. All the simulations presented in Figure 4a–f were run for the

same time period but note the 25% difference in y-axes, the

distance traveled by the cell, in Figure 4a–d versus Figure 4e–f.

The computational cell in Figure 4a (also shown in video S3 in the

Supporting Information) functions as a reference cell and has a CI

of 0.966. Decreasing the gradient steepness, through a larger value

of the parameter s as in Figure 4b (and Video S4), leads to a

smaller value of the CI (0.778), which is consistent with

experimental results [44]. Figure 4c (and Video S5) shows a cell

with a smaller value of the internal polarizability parameter p that

determines the width of the excitable region along the membrane.

This cell has a reduced speed, is less elongated than the reference

cell of Figure 4a, but has only a slightly reduced CI (0.931), which

is consistent with our observations for less developed cells as well

other experimental data [7]. In Figure 4d, we show a trajectory of

a cell with high cortical tension, parameterized by c1 and c2. This

cell exhibits fewer pseudopods but its speed is similar to that of

Figure 4a and its CI is 0.954, which is very close to the CI of the

reference cell. The model therefore predicts that the cortical

tension does not strongly influence the CI of the cell, but does

influence the frequency of pseudopod formation. In Figure 4e–f

the magnitude of the friction parameter l is varied, with low

friction (Figure 4e) resulting in long pseudopods and increased cell

speed and high friction (Figure 4f) resulting in shorter pseudopods

and reduced cell speed.

Membrane Patches and Chemotactic Cell Motility
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Our model is able to capture several qualitative features of

Dictyostelium motility. For example, the experiments show that

some pseudopods are maintained while others are retracted

(Figure 5a). Pseudopods that are aligned with the gradient were

found to have a higher probability of being maintained, and vice

versa [30]. Interestingly, these maintained pseudopods exhibit

‘‘come-and-go’’ RasGTP patch dynamics in which a patch

appears, disappears, and then re-appears, all at the same location,

as can be seen in experiment and is shown in Figure 5a. This

come-and-go patch dynamics is also observed in the results from

Figure 4. Simulation results. A time series of the motion of the model cell in an external upward gradient. Assuming a cell speed of 10 mm/min
and a cell length of 20 mm, the time between successive frames is approximately 15 s. (a) Shallow gradient. Model parameters are: Spontaneous
curvature k0 = 0.01, cortical tension c1 = 6.5 around the cell, c2 = 3.2 at the patch and c3 = 0.9 at areas of negative curvature (eq. (5)), polarization level
p = 10 (eq. (S1)), friction l = 0.1 (eq. (5)) and gradient width s = 1 (eq. (2)). Other parameters are as given in the Table of Parameters in the Supporting
Text S1. (b) Same as (a) with gradient width s = 12. (c) Same as (a) with p = 4. (d) Same as (a) with c1 = 13 and c2 = 6.4. (e) Same as (a) with l = 0.085. (f)
Same as (a) with l = 1.3.
doi:10.1371/journal.pcbi.1002044.g004

Figure 5. Patch dynamics. (a) Consecutive frames with a time interval of 6 seconds for a cell in the microfluidic device illustrating the come-and-go
dynamics of the patches. The high-intensity patch appears (frame 1, top left), disappears (frames 2 and 3) and reappears (frame 4), as shown by the
arrows. (b) The come-and-go dynamics of a patch in a simulated cell. The marked areas on the membrane (magenta) indicate a high a-field. The black
and magenta arrows point on two patches, reappearing on different times.
doi:10.1371/journal.pcbi.1002044.g005
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our numerical simulations, as shown in Figure 5b. Furthermore,

new pseudopods in our experiments are often created close to a

previous one (Figure 6a), consistent with previous experimental

studies where it was characterized as tip splitting [29,30].

Importantly, our simulations also exhibit this tip splitting

(Figure 6b), even though our model does not include any specific

splitting mechanism.

To further investigate this apparent tip splitting behavior, we

generated numerical cell data and analyzed these data using the

same software as in previous experimental studies ([28,29,49] see

Methods for more details). To this end, the locations of the

membrane nodes were recorded and the contour of the simulated

cells was computed using Matlab (Mathworks, Natick, MA). This

cell contour was then used to create a full ‘‘cell body’’ by

interpolating the discrete node locations and identifying the points

that are inside the closed contour. The movement and shape of the

simulated cell were analyzed using Quimp3 [49] to extract

pseudopod statistics. The results are shown in Figure 7a. The

angles of new pseudopods show a clearly bimodal distribution

similar to that obtained by Bosgraaf et al. [29], implying the

presence of a tip splitting mechanism. However, the distribution of

patches that drive the membrane protrusions of the simulated cell,

for the same numerical data set, is unimodal with a maximum at

an angle that corresponds to the gradient direction (Figure 7b).

The equations preclude a bimodal distribution of angles of new

pseudopods resulting from this distribution of patches, since every

pseudopod results from a patch. The apparent bimodal distribu-

tion must therefore be generated by the pseudopod detection

algorithm.

One important issue concerns the relative importance of the

transient nature of the patch dynamics versus the global resource

limitation in limiting the extensions of the pseudopods. Figure 8a

shows G(t) for the simulation corresponding to the cell tracks

shown in Fig. 4a. Clearly resource limitation is playing an

important role and for this case the patch dynamics are mostly

responsible for the initiation but not the cessation of protrusions.

But, this is not necessary. In Fig. 8b we show a cell track example

where we change the parameters of the chemical module to speed

up patch dynamics (see details in the Supporting Text S1). As is

seen in Figure 8c, G(t) oscillates but rarely dips down into the

region where it limits protrusion; instead the patch dynamics is

self-limiting. Altering the model in this manner does not change

the aforementioned results regarding the response of the cell to

varying the gradient strength and regarding the true source of

apparent tip splitting seen in experimental studies.

Discussion

Several recent studies have demonstrated that Ras activation is

upstream of F-actin polymerization in a causal sequence leading to

the formation of membrane protrusions and pseudopods

[7,22,26,27]. Our experimental assays on ‘‘2D’’ cells have been

able to quantify the extent of spatial correlation between

membrane areas of Ras activation (patches) and protrusions. We

Figure 6. Apparent tip splitting (a) Experimental results of a pseudopod splitting in a cell in the microfluidic device. The new
pseudopod is preceded by the appearance of a new high-intensity patch. Time gap between consecutive frames is 2 seconds. (b) Frames, separated
by roughly 2.5 s, illustrating the apparent tip splitting in a simulation. The marked areas on the membrane (magenta) indicate a high a-field.
doi:10.1371/journal.pcbi.1002044.g006

Figure 7. Simulation results. Pseudopod angle distribution (a) and patch angle distribution (b) for numerically generated cell data. The
pseudopod angle distribution was analyzed using Quimp3.
doi:10.1371/journal.pcbi.1002044.g007
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employed two different experimental assays to quantify this spatial

correlation. In one set of experiments, we used the standard under-

agar assay in which the vertical extent of cells was restricted by a

thin layer of agar. We found a high spatial correlation between

RasGTP patches and pseudopods in all analyzed cells, indicating

that activated Ras and membrane protrusions occur at the same

membrane location. However, drawbacks of this assay are that the

vertical dimension is not known since cells are able to lift the agar

to an unknown degree and that gradients are difficult to

characterize. To overcome these shortcomings, we also performed

experiments in microfluidic devices in which highly reproducible

gradients with a well-defined direction and steepness are

produced. Furthermore, the distance between the substratum

and the roof of these devices is precisely specified (2 mm). We

found that for cells in these devices the spatial correlation between

patches and pseudopods was also large and comparable to the

correlations found in the under-agar assay (Figure 2). This is also

found to be the case for cells under uniform stimulation. Thus, the

high spatial correlation between the patches and pseudopods

appears to be insensitive to the details of the assay. We expect that

this correlation is also large for cells that can extend freely in the

vertical direction, however, this is difficult to determine since it

requires a series of confocal scans in the vertical plane at each time

point and significantly restricts the period of time a cell can be

followed before suffering the effects of phototoxicity.

Establishing a high spatial correlation between the locations of

active membrane regions and extending pseudopods is consistent

with a causal relationship between the two and led us to create a

model in which patches govern the location of membrane

extensions. Our aim was to test how the dynamics of the signaling

components influences the overall cell motility and shape

dynamics. Our motility model addresses the two key ingredients,

patch formation and pseudopod extensions, using two coupled

modules that are responsible for obtaining realistic numerical cell

shape and motion. First, the patch module is responsible for the

creation of transient patches, as observed in the experiments.

Second, the motility module incorporates a number of relevant

forces acting on the cell membrane, including a term that couples

the dynamic activator to the protrusive force. This modeling

approach is distinct from previous attempts which mainly address

specific stages of cell motility such as protrusion, adhesion or

contraction [11,33] or use a rule-based approach [12].

Our model, however, is still highly simplified. Since the

biochemistry and specifically the exact reactions between the

signaling components are still not fully known, the signaling

module is mostly designed to replicate the experimental results so

that the influence on the motility can be tested. We note that a

recent paper by the Devreotes group introduces a very similar

excitable medium approach [45]. Our motility module also

simplifies a number of steps involved in generating membrane

protrusions. For instance, the coupling between the patch module

and the motility module, responsible for the protrusive force, is

taken to be simply linear but may be more complex. Furthermore,

the adhesion forces between the cell and the substratum are not

explicitly modeled and are subsumed in the overall set of forces

acting on the cell, as pushing forward is only possible in the

presence of anchoring points. Also, a possible contribution from

the bending energy is ignored. Despite these simplifications, our

model is able to capture realistic cell behavior and shapes during

chemotaxis (Figure 4), and provides insights into how dramatic

changes in the cell shape can result from small changes in the

signaling dynamics.

Our model contains a number of parameters that can be varied

to mimic different experimental conditions. For example, the

determination of the front of the cell in our model is a process that

is subject to noise. This noise is taken from a distribution with

width s and the strength of the gradient can be adjusted by

changing this width: a steep gradient corresponds to a narrow

distribution (and small s) while a shallow gradient corresponds to a

wide distribution (and large s). In agreement with experiments

[44,50,51], we find that the CI is maximal for steep gradients and

is reduced’ for shallow gradients (Figure 4b).

Another parameter of the model, p, represents the cell’s

polarizability and controls the excitability change along the cell

perimeter. As can be seen from Figure 4c, high values of this

parameter lead to cells with a high CI, an elevated cell speed, and

elongated cell shapes; this is the typical behavior of highly

polarized Dictyostelium cells [7]. In contrast, low values of p result in

rounder cells with a lower speed and lower CI, which is typical of

cells in early developmental stages (see also Supporting Videos).

The cortical tension in our model is represented by the

parameter c, with high values of c corresponding to a more rigid

membrane. Not surprisingly, increasing the cortical tension leads

to cell motion with fewer lateral pseudopods (Figure 4d). A direct

comparison with experimental phenotypes is difficult since a

quantification of the cortical tension in cells is problematic.

However, it is commonly assumed that myosin is involved in

establishing cortical rigor. Myosin mutants which have reduced

cortical tension display more lateral pseudopods than wild-type

cells and move more slowly [52,53].

Recent studies of Andrew and Insall investigated chemotactic

motion of Dictyostelium cells in the under-agar assay and presented

evidence that new pseudopods were made in spatially restricted

sites by splitting of the leading edge [30]. Furthermore, they found

that pseudopods were generated at relatively constant intervals,

independent of the orientation of the cell relative to the gradient,

Figure 8. Global coupling effect. The global parameter G as a function of simulated time. (a) Simulation parameters as is Figure 4a. and
G(t = 0) = 45. G(t) decreases as pseudopods grow and compete. (b) A cell track for a different set of parameters, in which the reaction-diffusion
dynamics (eq. 2) is sped up and G(0) = 70. (c) G(t) for the same cell of (b). In this case the limiting role of G is less significant, yet the cell behavior and
motion are virtually unchanged.
doi:10.1371/journal.pcbi.1002044.g008
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and that the survival and retraction of pseudopods were spatially

controlled such that pseudopods aligned with the gradient were

more likely to be maintained. They reasoned that their results

contradict chemical compass models in which cells generate new

pseudopods at the location of highest receptor occupancy (the

needle of the compass) [31,54]. They argued that cells guide their

motion through a mechanism in which a new pseudopod splits off

an existing one. A similar conclusion was reached by Bosgraaf and

van Haastert, who analyzed a large number of pseudopodal

extensions in chemotaxing Dictyostelium cells and found that the

distributions of angles between the current and next pseudopod

were bimodal with the peaks located at 650u from the gradient

direction [29].

Our model allows us to compare numerically obtained cell

dynamics with these recent experimental observations. First of all,

the reaction-diffusion model of the patch module is excitable and

generates patches in a stochastic fashion. This guarantees that

patches occur at rates that are set by the reaction-diffusion model

and are independent of the cell’s direction, consistent with

experimental observations. Also, our model produces cell

dynamics that resemble the tip splitting events observed in the

experiments. In physical systems, tip splitting is a consequence of a

spatial instability of the tip, resulting in the formation of multiple

tips [36]. Such an instability, however, is not present in our model

since an existing patch is stable, demonstrating that the observed

events do not require an explicit tip splitting mechanism. The

apparent tip splitting in our model is demonstrated in Figure 6b

where a new patch appears close to the old one, leading to a new

pseudopod that appears to split off from the old pseudopod.

The underlying patch dynamics can also explain the experi-

mental observation that cells maintain pseudopods that are aligned

with the direction of the gradient. As shown in Figure 5b,

numerical patches can exhibit come-and-go dynamics character-

ized by the appearance of a patch, followed by its disappearance

and re-appearance in roughly the same location. This repetitive

patch formation at the same spatial location is more likely to occur

in the direction of the gradient than away from the gradient. The

accompanied membrane protrusion, however, does not necessarily

exhibit this come-and-go dynamics, as protrusion initiation and

cessation are smoothed and are not as abrupt as the upstream

signaling. The time during which a pseudopod continues to move

forward after the protrusive force has vanished is controlled in our

model by the effective friction force parameter l. This parameter

represents the effective lag between the signal and its downstream

response, for example due to the time needed for the process of

actin polymerization. As a result, a series of consecutive but

separate patches at the same location can lead to what looks like a

‘‘winning’’ single pseudopod.

It should be noted that in our model, the phenomenon of tip

splitting results solely from the come-and-go dynamics of the

patches, and is independent of other components of the model

such as the global resource limitation, cortical tension and the

specific form of the forces. All of these are needed for a realistic cell

shape, but do not alter the main conclusions of our work, namely

the effects of the signaling dynamics on the observed pseudopod

behavior.

Pseudopods that are directed in the gradient direction and that

have long apparent lifetimes can also underlie the experimentally

observed bimodal distribution of pseudopod angles. Indeed, when

we compared the pseudopodal angle distributions in numerical cell

tracks using the automated software package Quimp3, we found a

bimodal distribution even though the patch distribution exhibits a

single peak in the direction of the gradient (Figure 7). Since our

model does not contain an explicit tip splitting mechanism, and

every pseudopod necessarily originates from a patch, this

bimodality is purely an outcome of the algorithm, which detects

a new pseudopod by identifying two spatially separated negative-

curvature zones. The bimodal distribution produced by Quimp3

may result from undercounting pseudopods at zero angle and/or

the elongated shape of cells.

In our model, the location of new pseudopods is determined by

the location of patches, which are themselves controlled by the

direction of the internal compass. The timescale for updating this

internal compass is a parameter in our model and controls the

persistence of the motion: a small timescale will lead to cells that

change directions more often than cells with a larger timescale.

Experimental values for this timescale, and how it depends on the

external conditions, are presently unclear. The direction of the

internal compass, and specifically its deviation from the external

direction, is determined by the steepness of the gradient (Figure 3).

For shallow gradients, the distribution of compass locations is wide

while for steep gradients this distribution is narrow. As a direct

consequence, we predict that the ratio between split and de novo

pseudopods in shallow gradients is lower than in steep gradients.

Experiments have only compared this ratio for cells in buffer and

for cells in a gradient [29]. These experiments found, consistent

with the above arguments, that the ratio is smaller for cells in

buffer and extending this comparison for different gradient

parameters would be interesting.

Our model contains a noisy internal compass with a direction

that depends on the external gradient direction through our

excitability parameter b and a noise level that is inversely

proportional to the steepness of the gradient. In previous work,

it was suggested that the generation of pseudopods at a constant

rate and the generation of pseudopods in the ‘‘wrong’’ direction

contradict the existence of such an internal compass [30].

However, our excitable reaction-diffusion system can produce

patches at a constant rate. Furthermore, our results show that the

internal compass model, even though it occasionally exhibits

pseudopods directed in the wrong direction, is able to produce

highly directed motion. Thus, our model is consistent with

experimental results and indicates that cells might utilize an

internal compass to direct their motion.

Since we want our cell simulator to behave in a robust manner

even for more complex chemical driving fields, we have

introduced several features of the motility module which do not

appear to be essential for the case of primary interest here, namely

motion in a stable, static gradient. Studies in which cells move in

more complex environments, replete with obstacles and/or

multiple sources, will be presented elsewhere; for those cases the

global resource constraint is needed to ensure that eventually the

cell moves in only one direction (see Supporting Figure S3) and the

flexibility of negative curvature is needed (see Supporting Figure

S4). We did not try to define a minimal model that would work

only under more limited scenarios. Instead, our strategy was to

embed patch dynamics in as realistic a motility module as we could

infer from the data and then verify that our conclusions regarding

cell shape, chemotactic index, and tip splitting were not affected by

these more global considerations.

In conclusion, our model can capture several qualitative features

of experimental cell motion. In particular, it is able to duplicate

apparent tip splitting dynamics, apparent spatial control of

pseudopod retraction, and the relatively constant rate of

pseudopod formation. It is important to stress that these

phenomena are produced without invoking a tip splitting

mechanism suggesting that such a mechanism is not required in

chemotaxing Dictyostelium cells. Furthermore, our model incorpo-

rates the notion of an internal compass which determines how the
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external gradient direction controls the locations of patches. Key

in our model is the fact that our compass is subject to fluctuations.

These fluctuations lead to a distribution of patches that is centered

around the gradient direction but with a width that depends on the

gradient strength. Thus, the needle of the compass is not

necessarily pointing in the direction of the highest receptor

occupancy at all times but fluctuates, leading to apparent tip

splitting.

Based on the experimental results, our model connects the two

major components in cellular chemotaxis, namely signaling and

motility. We show that the dynamics of signaling molecules is

related to the cell motility in a direct and localized manner, and

this connection can explain a large amount of currently available

data. This model was designed for the relatively simple system of

Dictyostelium chemotaxis, but can also be extended to describe other

types of cells such as immune cell migration, neuronal growth cone

motility and cancer metastasis. We believe that highly interesting

and valuable insights can be gained by focusing on the interplay

between signaling and motility.

Methods

Experimental Assays
Microfluidic devices, originally designed and used to study

gradient sensing in yeast [55], were modified to study cell

migration in a ‘‘2D’’ environment by decreasing the height of

the test chambers from 5 to 2 mm [35]. In brief, these devices

consist of an array of parallel rectangular test chambers of various

lengths between two flow channels that are 80 mm high.

Continuous flow of buffer with zero or 100 nM cAMP in the

flow channels creates stable linear gradients in the test chambers,

with slopes determined by 100 nM/w, where w is the width of the

chambers and varies from 100–650 mm.

Plasmid pDM115, a non-integrating vector containing the Ras

binding domain of Raf1 tagged with GFP and driven by the

actin15 promoter, was a gift from the van Haastert lab.

Transformants of D. discoideum strain AX4 carrying this vector

were selected for hygromycin or G418 resistance.

Exponentially growing cells were harvested from growth media

by centrifugation, washed twice in KN2/Ca buffer (14.64 mM

KH2PO4, 5.35 mM Na2HPO4, 100 mM CaCl2, pH 6.4), then

resuspended at 56106 cells/ml and shaken for 5 hrs with 50 nM

pulses of cAMP every 6 minutes to induce development

Chemotaxis under agar was performed as previously described

by Andrew and Insall [30]. Exponentially growing cells were also

pulse-developed prior to loading into the microfluidic flow channel

carrying buffer without cAMP. Cells were given 10 minutes to

settle onto the coverslip prior to establishment of the gradient.

Cells were imaged as they migrated across the test chambers.

Fluorescent images (488 nm excitation) were captured every

2 seconds with a 636 oil objective on a spinning-disk confocal

Zeiss Axiovert microscope equipped with a Roper Quantum

512SC camera. Images were collected using Slidebook 5

(Intelligent Imaging Innovations, Inc.).

Experimental Analysis
For each frame, the contour of the cell was extracted and areas

of cytosolic high intensity fluorescence were filtered out.

Membrane areas of high intensity were detected using a threshold

algorithm. The threshold value was adjusted to the movie

characteristics, and usually taken to be within 10% difference

from the maximal intensity. Protrusions were determined using the

difference in membrane location between consecutive frames.

Negative protrusions, i.e. inward motion of the membrane or

retraction of a pseudopod, were filtered out in this analysis. In the

case of several patches and several protrusions, the high-intensity

points were clustered using the dendrogram algorithm [56] based

on their Cartesian distances in space, so that well-distinguished,

separate patches were obtained. The protrusion points were also

clustered, and then each protrusion cluster was paired with the

nearest patch (see Supporting Text S1).

Computational Model
The cell membrane was parameterized by 100–200 nodes,

conveniently stored as a double-linked list. The nodes represent

the 1D membrane of the cell (see Figure S5 in the Supporting

Information). To ensure sufficiently smooth variations of a along

this membrane, we solved the reaction-diffusion equations (2) on a

refined array of 5000 points. This was achieved by attaching a

sub-array of points to each node in the membrane linked list.

The total number of membrane nodes is not constant and nodes

are added and removed to keep the distance between them within

a given range. When a pseudopod is extended, nodes are added at

the tip where the membrane ‘‘stretches’’ and removed at the back

of the cell. Care was taken such that the total amount of a and b

remained constant during this reparametrization. Our default

parameter set for the reaction-diffusion module and for the

motility module is given in the Supporting Information.

The list of node locations was recorded every 500 iterations and

used to construct the cell contour and the cell body. The cell was

drawn using Matlab and the separate frames were constructed into

a movie. This movie was later analyzed using Quimp3, an

automated pseudopod-tracking algorithm [49].

Supporting Information

Text S1 Additional information on correlation analysis, cluster-

ing, equation parameters, global coupling and model parameter

values.

(DOC)

Figure S1 Angle difference analysis. (a) The analyzed cell with

the identified RBD-GFP patch (cyan) and membrane protrusion

(red), and their centers (marked in blue and yellow, respectively).

(b) The angles hi and yi of the patch and protrusion, respectively.

The angles are measured with respect to the positive direction of

the x-axis and the line connecting the center of the cell and the

center of the patch or protrusion. (c) The cosine of the difference

between the angles cos(hi2yi) defines the spatial correlation

between the patch and protrusion.

(TIF)

Figure S2 Excitability variance along the cell. The excitability

parameter b as a function of the distance from the cell’s front is

shown for two values of the polarization parameter p. For p = 10

(red) the change is b is sharper than for p = 4 (blue), leading to a

more polarized cell with higher chemotactic index and speed (see

Figure 4 in the main text).

(TIF)

Figure S3 Global coupling effect. (a) Without global coupling –

nonrealistic cell behavior. (b) With global coupling – realistic cell

behavior that matches experimental evidence.

(TIF)

Figure S4 The effect of low cortical tension at negative

curvature. (a)–(b) A cell with two pre-defined patches, leading to

two pseudopods. Cortical tension: c1~2, c2~0:5 in both cases.

(a) Cortical tension at negative curvature areas c3~0:5, (b) With

no curvature dependence of the cortical tension (i.e. tension is
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either c1 or c2, depending on the value of the activator a only). The

cell in (a) exhibits a more biologically realistic shape compared to

(b). (c)–(d) A cell with stochastically created patches, parameters as

in Figure 4a in the main text. (c) with c3~0:9, (d) with no

negative-curvature dependence of the cortical tension. The cell in

(d) is unable to produce significant pseudopods compared to the

cell in (c).

(TIF)

Figure S5 A schematic representation of the model cell. The

membrane is represented by the nodes (large circles) while the

reaction-diffusion equations are solved on the finer grid of points

(smaller circles).

(TIF)

Video S1 A cell subjected to two chemoattractant sources,

without global coupling.

(AVI)

Video S2 A cell subjected to two chemoattractant sources, with

global coupling.

(AVI)

Video S3 Steep gradient (s = 1 in eq. (3), polarization parameter

p = 10 in eq. (S1)).

(AVI)

Video S4 Shallow gradient (s = 12 in eq. (3), polarization

parameter p = 10 in eq. (S1)).

(AVI)

Video S5 Less polarized cell: p = 4 (s = 1).

(AVI)
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